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Based on a signaling process of complex networks, a method for identification of community structure is
proposed. For a network with n nodes, every node is assumed to be a system which can send, receive, and
record signals. Each node is taken as the initial signal source to excite the whole network one time. Then the
source node is associated with an n-dimensional vector which records the effects of the signaling process. By
this process, the topological relationship of nodes on the network could be transferred into a geometrical
structure of vectors in n-dimensional Euclidean space. Then the best partition of groups is determined by F
statistics and the final community structure is given by the K-means clustering method. This method can detect
community structure both in unweighted and weighted networks. It has been applied to ad hoc networks and
some real networks such as the Zachary karate club network and football team network. The results indicate
that the algorithm based on the signaling process works well.
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I. INTRODUCTION

The study of complex networks has been paid an enor-
mous amount of attention �1–3� by the scientific community
in recent years. The topologies of a wide variety of systems
are studied, such as the World Wide Web �4�, social and
communication networks �5,6�, biochemical networks, and
so on �7�. One interesting problem is detecting the commu-
nity structure of networks. Communities or modules within
networks can loosely be defined as subsets of nodes which
are more densely linked with each other, while compared to
the rest of the network �8,9�. Such communities have been
observed in many different contexts, including metabolic
networks, banking networks, and most notably social net-
works. As a result, the identification of communities has
been the focus of many recent efforts. Community detection
in large networks is potentially very useful, because nodes
belonging to a tight-knit community are more likely to have
some properties in common. What is more, these communi-
ties may probably be functional groups, which provide us
valuable reference to our study in many other fields. In re-
cent studies, many different algorithms have been proposed
�8–24� �see �11� for a review� to detect the community struc-
tures. These algorithms can be divided into three categories.
Some algorithms are designed according to maximal modu-
larity Q. Some are designed based on topology structures
�betweenness, degree, or clustering coefficient�. And the oth-
ers are designed according to the dynamical properties of the
network.

Modularity Q is an index advanced by Newman and
Grivan �25� as a measurement for the community structure.
It gives a clear and precise definition of the characteristics of
the acknowledged community and has had very successful
application in practice. So it leads us to many other algo-
rithms brought forward to divide a community by maximiz-
ing the modularity Q. Unfortunately, maximizing the modu-

larity Q has been proven to be a nondeterministic polynomial
time �NP�-complete problem �26�, which makes it unable to
work out the partition corresponding to maximal Q in a large
network. Actually many algorithms for maximizing Q are
usually heuristic algorithm. Besides, with respect to the
modularity Q, it has been strictly proven that, as an index to
measure the community structure, it tends to combine the
small communities rather than identify them successfully in
networks with definite communities �27�. Though the modu-
larity Q has been proven to have the above-mentioned inher-
ent defects, it is still a successful index to measure a network
for the moment. Therefore, lots of works for detecting com-
munities are dependent on the index Q.

The Grivan-Newman �GN� algorithm �9� and spectral
analysis method are two algorithms based on network topol-
ogy. The GN algorithm was proposed by Grivan and
Newman. It first gets the dendrogram concerning the net-
work structure by removing links with the largest between-
ness. Then with the help of the modularity Q or other indi-
ces, the best partition of the network can be obtained. The
principle of the spectral analysis method �29� is based on the
theory of the eigenvector of the matrix. Relatively speaking,
the spectral analysis method is the most mathematical-
theory-based approach. It needs also some methods to deter-
mine the best partition, by using Q, ascertaining the sizes of
the two subnetworks by the sign of the elements of Fielder’s
eigenvector and so on.

There are still other algorithms based on the dynamics of
networks, among which the random walk �14� method and
circuit approach method �17� will be briefly discussed here.
For the random walk method, each node contains a walker
initially. Then each walker will randomly choose a neighbor
of the node it currently stands on to localize. It is a Markov
process. After a proper period of time, the walker has a prob-
ability to reach any other nodes. Based on this possibility, a
dendrogram of the network can be obtained. Then partition
can be made by the aid of the modularity Q. When using the
random walk method to detect communities, it is difficult to
specify the optimum random-walking time. And the best par-
tition is usually dependent on the index Q. The principle of
the circuit approach method is to regard the edges of the
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network as the resistances and add voltage to adequate nodes
of the network, then work out the voltage of each node by
Kirchhoff’s law. Nodes with similar voltages are regarded to
exist in the same community more probably. At the same
time, it defines the index such as tolerance to realize the
partition of the network.

In this paper, we propose an algorithm for identification
communities based on the signaling process of a network. In
this approach, every node is viewed as an excitable system. It
can send, receive, and record signals. Initially, a node is se-
lected as the source of signal. An initial signal is set on the
source node, while other nodes are without any signals. Then
the source node sends a signal to its neighbors and itself first.
Afterwards, the nodes with signals can also send signals to
their neighbors and themselves. In this signaling process, we
require that the node record the amount of signals it has
received, and at every time step, each node sends all its
present-owning signals to its neighbors and itself. After a
certain T time steps, the amount distribution of signals over
the nodes could be viewed as the influence of the source
node on the whole network. For a network with n nodes, the
signal distribution can be characterized by an n-dimensional
vector.

If a network has n nodes, we can obtain the influence of
every node by the same operation. The results are given by n
n-dimensional vectors. Generally speaking, the source node
should influence its own community first and then influence
the whole network by spreading among different communi-
ties. So naturally, compared with nodes in other communi-
ties, the nodes of the same community have more similar
influence on the whole network. And the difference of influ-
ence could be given by the n-dimensional vectors.

Thus, by the above signaling process on networks, the
topological structure of nodes is converted into the geometri-
cal relationships of vectors in n-dimensional Euclidean
space. We can obtain the community structures of nodes by
clustering these n-dimensional vectors. Actually, there are
already many methods to cluster vectors in Euclidean space.
Here we chose the K-means clustering �KMC� method as-
sisted by F statistics �31� to get the best partition of the
communities. F statistics describes the best partition as hav-
ing a shorter average distance between vectors inside the
same community and a larger distance between vectors of
different communities. After getting the best number of
groups by F statistics, we can detect the communities by the
KMC method.

Some problems related to the above method are also dis-
cussed, including the optimum time steps T of inspiration
and the generalization of the method to weighted networks.
Then we applied the method to detect the communities in ad
hoc and some real networks. Its precision and accuracy are
obtained and compared with some other algorithms. The re-
sults indicate that the method based on the signaling process
performs well.

II. METHOD BASED ON THE SIGNALING PROCESS

A. Basic algorithm

1. Signaling process

For a network with n nodes, every node is assumed to be
a system which can send, receive, and record signals. A node

can only affect its neighbors, which will affect their neigh-
bors in the same way. Finally, each node will affect the
whole network. In general, one node will affect its commu-
nity first and then the whole network via its community. So
we can safely conclude that the nodes in the same commu-
nity will affect the whole network in a similar way.

At the beginning, we select a node as the source and give
it one unit of signal, but the other nodes have no signal. Then
let the source node send a signal to all of its neighbors and
itself. After the first step, the node and all its neighbors have
a signal. In the second step, all the nodes with a signal will
send the signals to their neighbors and themselves. Every
node can record the amount of signals it received, and then it
will send the same quantity of signals in the next time step.
In this way, the process will be repeated continuously on the
network. After T time steps, we can get an n-dimensional
vector that records each node’s signal quantity which repre-
sents the effect of the source node. The signaling process is
sketched out in Fig. 1 by a simple network with five nodes.
Choosing every node as the source node, respectively, we
can get n such vectors. The reason that we let each node send
a signal or signals to itself is to take account of the historical
effects. This has been proven to be helpful to distinguish the
amounts of signals between the nodes in the community and
outside in a relatively short time period. Normalizing the n
vectors, then the distance of each pair of vectors will repre-
sent the similarity of the corresponding nodes. Using this
kind of similarity the communities can be detected.

Actually, the above signaling process could be described
by a simple but clear mathematical mechanism. Suppose we
have a network with n nodes; it can be represented math-
ematically by an adjacency matrix A with elements Aij if
there is an edge from i to j and 0 otherwise. Then the column
i of matrix V= �I+A�T will represent the effect of source
node i to the whole network in T steps. In order to get the
relative effect, we should normalize each column of matrix
V. Assume the column i of V is Vi= �vi1 ,vi2 , . . . ,vin�; then,
the Vi can be normalized as Ui= �ui1 ,ui2 , . . . ,uin�, here, uij

=
vij

� j
nvij

. Then to partition the network with n nodes is equiva-
lent to a cluster of n vectors U1 ,U2 , . . . ,Un in Euclidean
space.

FIG. 1. Sketch of the signaling process. �a� We set a signal on
node 1 and other nodes have no signal initially. �b� In the first step
node 1 sends one signal to all its neighbors which are nodes 2, 3, 4,
and 5 and itself. Then all nodes have one signal. �c� Next, each of
them will send one signal to their neighbors and themselves, respec-
tively, at the same time. After the second step, node 1 has five
signals, both nodes 2 and 3 have four signals and nodes 4 and 5
have three signals. The vector �5,4,4,3,3� represents the effect of
node 1 to the whole network in two steps. �d� Then every nodes
send the same amount of signals as they received in the last step to
their neighbors and themselves.
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2. K-means clustering

It is well known that there are many clustering methods
and algorithms for vectors in Euclidean space. In this paper,
we choose the inexpensive KMC algorithm �31� to detect
communities for the vectors given by the signaling process.
The KMC algorithm is described as follows.

�i� Set K as the number of communities to partition.
�ii� Choose proper K vectors for the K communities as

their centroids.
�iii� Randomly choose a vector. The vector will belong to

the community when the distance between the vector and the
centroid of the community is minimum among all the cen-
troid of communities.

�iv� Recompute the communities’ centroids which have
added a vector or deleted a vector.

�v� Repeat step 3 to step 4 until all the centroids cannot be
modified.

We know that there are many kinds of definitions for dis-
tance. In our algorithm we choose the Euclidean distance to
measure the similarity between vectors of nodes. How to find
the proper K centroids? We can randomly choose a vector as
the first centroid. Then we choose a vector with the largest
distance to the first centroid as the second one. In the same
way, at the tth step, we always choose a vector with the
largest sum of distance from it to all the t−1 centroids as a
new centroid until we get K centroids.

3. F statistics

At the first step of the K-means clustering algorithm, we
must set an extra parameter K which presents how many
clusters we will partition. Here we use F statistics �31� to
estimate a proper K. Suppose U= �u1 ,u2 , . . . ,un� is the set of
vectors of all nodes and uj = �xj1 ,xj2 , . . . ,xjn�; here, xjk is the
kth character quantity of uj. Suppose K is the number of
communities and ni is the number of nodes of the ith com-
munity. We name all the nodes’ vectors of the ith community
as u1

i ,u2
i , . . . ,uni

i . Let x̄k
i = 1

ni
� j=1

ni uj
i�k�, k=1,2 , . . . ,n, be the

mean characters of ith community, ūi= �x̄1
i , x̄2

i , . . . , x̄n
i � be the

ith community’s centroid, and ū= �x̄1 , x̄2 , . . . , x̄n� be all the
nodes’ centroid; here, x̄k= 1

n� j=1
n xjk �k=1,2 , . . . ,n�. Then F

statistics is defined as

F =

�
i=1

K
ni � ūi − ū�2

K − 1

�
i=1

K

�
j=1

ni �uj
i − ūi�2

n − K

, �1�

where �ūi− ū�=	�k=1
n �x̄k

i − x̄k�2 is the distance between ūi and
ū, and �uj

i − ūi� is the distance between the uj
i node of the ith

and the centroid ūi. The numerator of F signifies the distance
of intercommunities and the denominator the distance of in-
tracommunities. So the F could be larger when the difference
distance of intercommunities is larger and the difference dis-
tance of intracommunities is smaller. When F achieves the
maximum, we can get the best partition.

For a binary ad hoc network which contains 128 nodes
and 4 groups, we proceed with the signaling process as

above to test the F statistics. The results show that F statis-
tics is very efficacious. On weighted ad hoc networks, the
results are similar to the binary ones. The clearer the com-
munity structure is, the more distinct the maximal value of
the F statistics. The results are shown in Fig. 2.

B. Some related problems

1. Most optimal T

The parameter T is an important factor for the results of
community identification. We can image that the length T
must be adequate to gather enough information about the
topology of the network, but it should not be too long to
overshadow the information we have gathered. In order to let
the majority of nodes affect the whole network and not to
overshadow the information about the topology of the net-
work, we guess that it may be optimal when T is near to the
average shortest path of the network. In order to verify it,
some numerical experiments are done on binary networks
which contain 128 nodes and 4 groups, the same as above.
The results are shown in Fig. 3. The accuracy of the algo-
rithm reaches optimum when T is 3 or 4. It seems that our
guess is provable. Of course, we only do some numerical
experiments on artificial networks. It is hard to say the rule
satisfies all kinds of networks. The random walk method �14�
has also encountered the same problem. How to find the
optimal T? We think it is still an open question.

2. Time complexity analysis

The time complexity of our algorithm can be analyzed as
follows. For a definite K which is the number of communi-
ties, the time complexity for K-means clustering is O�Kn2�.
The time complexity of the process of signal diffusion is
O�Tn3� when we use multiplication of the matrix to simulate
the process. But if we simulate the process in a network
directly, the corresponding time complexity is O(T�k+1�n2),
where k is the average degree of nodes in a network. If we do
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FIG. 2. �Color online� F statistics as a function of the number of
clusters K. The plot shows the changes of F statistics when T=3
and 
kinter� changes from 4 to 8. It shows that when 
kinter� is smaller
than 8, F statistics can identify the right number of communities.
When the community structure is clearer, the maximal value of the
F statistics is very distinct. The results are an average of 20 real-
izations of networks. Error bars show the differences among
networks.
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not have any information about the community number, the
community number K should be tested from 2 to n; thus, the
time complexity should be O�n4�. But if we know the range
of K, which is independent of n, the time complexity will
decrease sharply.

3. Generalization to weighted networks

It is easy to generalize our algorithm to a weighted net-
work. Suppose we have a weighted network with n nodes; it
can be represented mathematically by an adjacency matrix
W with elements Wij. Wij denotes the connection strength of
node i and j �in some weighted networks, Wij does not de-
note the strength of connection, we should transform the
weight before the algorithm�; then, V= �I+W�T. The rest of
the algorithm is the same as the algorithm on a binary ad hoc
network.

4. Relation to other methods

There two points where our method differs from the ran-
dom walk method �14� and circuit approach method �17�.
First, we use the signal diffusion process to transfer the to-
pology into geometrical structure. The mathematical form is
�I+A�T. The distance of each pair of column vectors of the
matrix is the intimacy of the corresponding pair of nodes.
The random walk method obtains the intimacy of each pair
of nodes by random walks. The mathematical form is
(diag� 1

d1

1
d2
¯

1
dn

�A)T where di denote the degree of node i,
and “diag” means the diagonal matrix. Taking account of the
effect of node degree, it also uses the Euclidean distance to
define the intimacy. The circuit approach method obtains the
intimacy of each pair of nodes by Kirchhoff’s law. Adding
the potential difference to the proper two nodes, by Kirch-
hoff’s law, we can obtain the potential of each node. The
closer of the potentials of two nodes are, the more intimate
the two nodes. Suppose we add the potential difference of
nodes 1 and 2; then, their potentials are p1=1 and p2=0. Let
pi denote the potential of node i. The mathematical form of
Kirchhoff’s law is B= (A diag� 1

d1

1
d2
¯

1
dn

�), �p3 , p4 , . . . , pn��

= �I− B̃�−1C, where B̃ denotes the matrix B with eliminating
the first and second columns and rows, C

= �
A31

d3
,

A41

d4
, . . . ,

An1

dn
��.

Second, as to the method of clustering, we use the F sta-
tistics and classical KMC method to partition the vectors.
When the F statistics achieves its maximum, we get the best
partition. The random walk method and the circuit approach
method also need the help of other indices to obtain the best
partitions. One is the modularity Q; the other is tolerance. So
we could say that the F statistics and KMC method are all
based on the geometrical structure of the vector space, but
the other two methods need the additional help of param-
eters. In the following discussion, we will compare the accu-
racy and precision with other famous algorithms which are
not based on the dynamics of networks.

III. RESULTS AND COMPARISON WITH
OTHER ALGORITHMS

In order to investigate the performance of our algorithm,
the accuracy and precision of our algorithm will be com-
pared with the Potts algorithm �Potts� �16�, Girvan-Newman
algorithm �GN� �25�, and extremal optimal algorithm �EO�
�13�. All these algorithms can be generalized to weighted
networks �30�. Here we abbreviate the GN-weighted version
as WGN and EO as WEO.

Accuracy means consistency when the community struc-
ture from the algorithm is compared with the presumed com-
munities, and precision is the consistency among the com-
munity structures from different runs of an algorithm on the
same network. They both need a measurement to compare
two different communities. There are already several indices
for this purpose. Danon et al. proposed a measurement
I�A ,B� based on information theory �11�. It is based on the
confusion matrix N, where the rows denote the presumed
communities and the columns correspond to the communities
found by some algorithms. The matrix element �Nij� of N is
the number of nodes in the presumed community i that ap-
pear in the found community j. A measure of similarity be-
tween the partitions, based on information theory, is then

I�A,B� =

− 2�
i=1

cA

�
j=1

cB

Nij ln� NijN

Ni.N.j


�
i=1

cA

Ni. ln�Ni.

N
 + �

j=1

cB

N.j ln�N.j

N


�2�

where cA is the number of presumed communities and cB is
the number of found communities, Ni. is the sum over row i
of matrix Nij, and N.j is the sum over column j.

The information measurement mainly focus on the pro-
portion of nodes which are correctly grouped. We proposed a
similarity function S to measure the difference between par-
titions �30�. Starting from two community structures
�A1 ,A2 , . . . � and �B1 ,B2 , . . . � over the same set N, first, we
need to identify the correspondence between A’s and B’s by
a similarity measurement. Second, for each pair of groups,
the similarity of Aj and Bj is given by

FIG. 3. �Color online� Let K=4 in the algorithm always. The
plot shows the changes of accuracy measured by the similarity
function S when T changes from 1 to 20 on binary ad hoc networks.
From the plots we can see that T�3 is the proper length. And here
3 is near the average shortest paths of each artificial network.
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sj =
�Aj � Bj�
�Aj � Bj�

�3�

and the total similarity can be calculated as

S =

�
i=1

K

si

K
. �4�

The similarity functions integrate the information about the
proportion of the number of node coappearances in pair
groups and the number of groups in A and B. It disfavors
solutions with smaller or larger number of communities than
target solution. In Fig. 4, the accuracies measured by both
the information index I�A ,B� and similarity function S are
given. They have similar qualitative behavior, but the simi-
larity function S is more sensitive to the difference in number
of clusters. In the following discussion, we mainly use the
similarity function to measure the accuracy. In the empirical
analysis for college football networks, the accuracies of dif-
ferent results are given by both measurements.

In the following numerical investigations of ad hoc net-
works, we first obtain 20 realizations of artificial community
networks under the same conditions. Then we run each algo-
rithm to find communities in each network 10 times. Based
on these results, using the similarity function S, comparing
each pair of these 10 community structures and averaging
over the 20 networks �average of totally C2

10�20=900 re-
sults� we could get the precision of the algorithm. Compar-
ing each divided groups with the presumed structures, we
can get the accuracy of the algorithm by averaging these
10�20=200 results.

A. Results of ad hoc networks

1. Binary ad hoc networks

In order to compare our algorithm with others, we first
test it on computer-generated random graphs with a well-
known predetermined community structure �25�. Each graph
has N=128 nodes divided into 4 communities of 32 nodes

each. Edges between two nodes are introduced with different
probabilities depending on whether the two nodes belong to
the same group or not: every node has 
kintra� links on aver-
age to its neighbors in the same community and 
kinter� links
to the outer world, keeping 
kintra�+ 
kinter�=16. The precision
of our algorithm is better than EO and almost the same as
Potts and GN, while the accuracy of our algorithm is better
than GN and almost the same as EO and Potts �as shown in
Fig. 5�.

2. Weighted ad hoc networks

In weighted networks, we use similarity link weight to
describe the closeness of relations between nodes. Under the
basic construction of ad hoc networks described above, the
intragroup link weight is assigned as wintra, while the inter-
group link weight is assigned as winter. Similarly with

kintra�+ 
kinter�=16, we require the link weight on intra- and
interlinks to follow the constraint 
wintra�+ 
winter�=2, where

wintra� �
winter�� is the average of all intragroup �intergroup�
link weights. Here for simplicity, we assign the same weight
winter=w to all intergroup links and assign the same weight
wintra=2−w to all intragroup links. From Fig. 6, we can find
that the precision of our algorithm is better than WEO and
Potts and equal to WGN; the accuracy of our algorithm is
better than WGN, but almost equal to WEO and Potts. Even
for the case with 
kinter�� 
kintra�, but 
winter�� 
wintra�, or
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FIG. 4. �Color online� Accuracy as the function of K for binary
ad hoc networks with 128 nodes and 4 presumed groups. Lines with
squares are measured by the information index I�A ,B� and lines
with circles are given by the similarity function S. T=3 in the al-
gorithm and 
kinter� changes from 4 to 8 for lines from top to
bottom.

(b)

(a)

FIG. 5. �Color online� Algorithm performance as applied to ad
hoc networks with n=128 and 4 communities of 32 nodes each.
Total average degree is fixed to 16. The horizontal axis gives the
change of 
kinter�. We can see that the precision of our algorithm is
better than EO and Potts and equal GN and the accuracy is better
than GN and almost the same as EO and Potts.
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with uniform distribution of link weights, we can get similar
conclusions.

3. Complete weighted networks

An extreme idealized example is the complete network. In
complete networks, we use uniform distribution of link
weights. Weights are taken randomly from the interval
�
wintra�−0.25, 
wintra�+0.25� and �
winter�−0.25, 
winter�
+0.25� for intragroup and intergroup connections, respec-
tively. The precision of our algorithm is better than WEO and
Potts and equal to WGN when 
winter�� 
wintra�. But its ac-
curacy almost declines to zero when 
winter� is greater than
0.9. Figure 7 shows the results in detail.

It should be mentioned that in the above discussion, the
community structures in the binary or weighted ad hoc net-
works are actually determined by the topology or weight
distribution of the networks. So the solution of the commu-
nity should differ from the imposed structure especially
when 
kinter� or 
winter� is large. The imposed structure is not
the appropriate communities at all. So when we compare
communities obtained from an algorithm with the imposed
structure, the drop in accuracy does not mean a failure of the
method. The accuracy here cannot evaluate the performance
of the algorithm, but only gives some descriptions of it.

B. Empirical results on some real networks

1. Zachary’s karate club

The Zachary karate club network �28� has been consid-
ered as a simple sample for community-detecting methodolo-
gies �9,10,19,21,23,25�. This network was constructed with
the data collected from observing 34 members of a karate
club over a period of 2 years and considering friendship be-
tween members. We let T=3 and obtain the best partition �as
shown in Fig. 8�, which perfectly corresponds to the result
given in Ref. �10�

(b)

(a)

FIG. 6. �Color online� The performance of algorithms in
weighted ad hoc networks with n=128 and 4 communities of 32
nodes each. 
kintra�= 
kinter�=8, winter changes from 0.05 to 1. We
can see that the precision of our algorithm is better than WEO and
Potts and equal to WGN and the accuracy of our algorithm is better
than WGN, but almost equal to WEO and Potts.

(b)

(a)

FIG. 7. �Color online� Precision and accuracy of algorithms in
complete weighted networks with presumed communities. The
complete network has 128 nodes and 4 communities of 32 nodes
each. When 
winter�� 
wintra�, the precision of our algorithm is bet-
ter than WEO and Potts and equal to GN and the accuracy of our
algorithm is better than GN always, but sharply declines to near 0.2
when 
winter� is greater than 0.9.

FIG. 8. �Color online� Our algorithm detects two communities
from the Zachary karate club, which perfectly corresponds to the
results given in �10�.
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2. College football network

The algorithm is also applied to college football network
provided by Newman. The network is a representation of the
schedule of Division I games for the 2000 season: nodes in
the network represent teams and edges represent regular-
season games between the two teams they connect. What
makes this network interesting is that it incorporates a known
community structure. The teams are divided into 12 confer-
ences. Games are more frequent between members of the
same conference than between members of different confer-
ences. The average shortest path length of the football net-
work is 2.5, so we let the signaling time T=2. When the F
statistics achieve the maximum we get the best partition. We
detect 14 communities when F reaches its maximum �Fig. 9�.
The accuracy measured by similarity function is 0.74, which
is a little better than any of the others �Table I�. We also use

the information measurement I�A ,B� to evaluate the perfor-
mance of the algorithms. The corresponding accuracy of our
algorithm is 0.92, which is also better than any of the others.

IV. CONCLUSION

The investigation of community structures in complex
networks is an important issue in many domains and disci-
plines. This problem is relevant to social tasks, biological
inquiries, or technological problems. In this paper, we have
introduced a method to detect communities based on the sig-
naling process on networks.

In a complex networks with n nodes, every node is
viewed as a system which can be excited. Each node sends
its neighbors and itself signals and records the number of
signals it receives at every time step. For each node of the
network, we take it as the signal source one time. For the
source node, we give it an initial unit quantity signal and
other nodes have a signal of zero. Then after T steps on the
network have taken place, the signal distribution of the nodes
denoted by an n-dimensional vector can be viewed as the
influence of the source node on the whole network. In com-
plex networks, we can generally consider that the node al-
ways influences its community first and then the whole net-
work. Thus, compared with nodes in other communities,
nodes in the same community have a similar influence on the
whole network. So through the signaling process, the net-
work partition problem is transformed into the vector clus-
tering problem in Euclidean space. The communities can be
work out by the KMC method with the help of F statistics.
Moreover, our algorithm can also be generalized to weighted
networks when we think the weighted connections can mag-
nify or dwindle the signals linearly. We have compared the
precision and accuracy of our algorithm with EO, Potts, and
GN algorithms. The numerical results for both ad hoc and
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FIG. 9. �Color online� Plot shows the change of the F statistics
with the number of communities when T=2 for college football
network. F statistics achieves its maximum when the number of
communities is 14.

TABLE I. The accuracy of each detected community compared with the counterpart of a real-world
community �measured by the similarity function�. The last two rows give the accuracy of the communities
measured by the similarity function �S� and information index �I�, respectively.

Conference name KMC accuracy GN accuracy EO accuracy Potts accuracy

Atlantic Coast 1 0.9000 1 1

Big East 0.8000 1 0.8356 0.5600

Big10 1 1 0.9833 1

Big12 1 0.9231 1 0.9143

Conference USA 0.9000 0.9000 0.8400 0.7071

IA Independents 0.1818 0 0 0

Mid American 0.5385 0.8667 0.8852 0.8320

Mountain West 1 0 0.5143 0.3756

Pac10 1 0.5556 0.9374 0.7125

SEC 1 0.7500 0.7956 0.8100

Sunbelt 0.4444 0.4444 0.0444 0

Western Athletic 0.7273 0.7273 0.7273 0.5091

Accuracy �S� 0.7378 0.6723 0.7136 0.6184

Infor-accuracy �I� 0.9150 0.8787 0.8865 0.8601
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real networks have proved that our algorithm works well, but
the accuracy and precision are almost the same with the EO
and Pott algorithms. Although the time complexity of our
algorithm is O�n4� and it is not practically useful for large
networks, it is useful for many small and important networks
such as metabolic networks �32�, protein networks �33�, and
some social networks �34�.
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